Abstract

AbstractA severe lack of von Willebrand factor–cleaving protease (VWF-CP) activity can cause thrombotic thrombocytopenic purpura (TTP). This protease was recently identified as a member of the ADAMTS family, ADAMTS-13. It consists of a preproregion, a metalloprotease domain, a disintegrin-like domain, a thrombospondin type-1 motif (Tsp1), a cysteine-rich domain, a spacer domain, additional Tsp1 repeats, and CUB domains. To explore the structural and functional relationships of ADAMTS-13, we prepared here 13 sequential COOH-terminal truncated mutants and a single-point mutant (ArgGlyAsp [RGD] to ArgGlyGlu [RGE] in the cysteine-rich domain) and compared the activity of each mutant with that of the wild-type protein. The results revealed that the truncation of the cysteine-rich/spacer domains caused a remarkable reduction in VWF-CP activity. We also prepared immunoglobulin G (IgG) fractions containing inhibitory autoantibodies against ADAMTS-13 from plasma from 3 patients with acquired TTP, and we performed mapping of their epitopes using the aforementioned mutants. The major epitopes of these antibodies were found to reside within the cysteine-rich/spacer domains. These results suggest that the ADAMTS-13 cysteine-rich/spacer domains are essential for VWF-CP activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.