Abstract

The modelling of many real life phenomena for which either the parameter estimation is difficult, or which are subject to random noisy perturbations, is often carried out by using stochastic ordinary differential equations (SODEs). For this reason, in recent years much attention has been devoted to deriving numerical methods for approximating their solution. In particular, in this paper we consider the use of linear multistep formulae (LMF). Strong order convergence conditions up to order 1 are stated, for both commutative and non-commutative problems. The case of additive noise is further investigated, in order to obtain order improvements. The implementation of the methods is also considered, leading to a predictor-corrector approach. Some numerical tests on problems taken from the literature are also included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.