Abstract

MicroRNAs (miRNAs), which are endogenous short noncoding RNAs, can regulate genes involved in important biological and pathological functions. Therefore, dysregulation of miRNAs plays a critical role in cancer progression. However, whether the aberrant expression of miRNAs is regulated by oncogenes remains unclear. We previously demonstrated that a disintegrin and metalloprotease domain 9 (ADAM9) promotes lung metastasis by enhancing the expression of a pro-migratory protein, CUB domain containing protein 1 (CDCP1). In this study, we found that this process occurred via miR-1 down-regulation. miR-1 expression was down-regulated in lung tumors, but increased in ADAM9-knockdown lung cancer cells, and was negatively correlated with CDCP1 expression as well as the migration ability of lung cancer cells. Luciferase-based reporter assays showed that miR-1 directly bound to the 3′-untranslated region of CDCP1 and inhibited its translation. Treatment with a miR-1 inhibitor restored CDCP1 protein levels and enhanced tumor cell mobility. Overexpression of miR-1 decreased tumor metastases and increased the survival rate in mice. ADAM9 knockdown reduced EGFR signaling and increased miR-1 expression. These results revealed that ADAM9 down-regulates miR-1 via activating EGFR signaling pathways, which in turn enhances CDCP1 expression to promote lung cancer progression.

Highlights

  • Lung cancer is the leading cause of cancer-related mortality [1]

  • We found that ADAM9 enhanced lung cancer migration by up-regulating CUB domain containing protein 1 (CDCP1) and that blocking the two proteins reduced lung cancer metastasis [3]

  • A significant positive correlation of ADAM9 and CDCP1 expression was detected in lung adenocarcinoma patients from The Cancer Genome Atlas (TCGA) dataset (R = 0.377, Figure 1A)

Read more

Summary

Introduction

Lung cancer is the leading cause of cancer-related mortality [1]. Non–small cell lung carcinomas account for approximately 85% of lung cancers and have an overall 5-year survival of 15%, which is dependent in large part on the stage of disease at diagnosis [2]. In our understanding of tumor biology, dominant oncogenes exhibit interplay with tumor suppressor genes in pathogenesis and are involved in mediating tumor progression. These genes may offer new targets for biological therapies. A disintegrin and metalloprotease 9 (ADAM9) and CUB-domain-containing protein 1 (CDCP1) are both oncogenic membrane proteins associated with lung cancer metastasis [3]. Overexpression of ADAM9 in lung cancer cells is correlated with brain metastasis [7]. CDCP1, a cell surface glycoprotein for cell-cell interactions, promotes cancer metastasis and increase anchorage-free survival in lung adenocarcinoma [8]. Suppression of CDCP1 reduces tumor metastasis in vivo, demonstrating that blocking the function of CDCP1 influences tumor progression [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call