Abstract

A disintegrin and metalloproteinase 19 (ADAM19, or adamalysin 19) is a cell surface glycoprotein with a signal sequence, a prodomain, a metalloproteinase domain, a disintegrin domain, a cysteine-rich domain, a epidermal growth factor-like domain, a transmembrane domain, and a cytoplasmic domain. It is an endopeptidase that cleaves extracellular matrix proteins and sheds growth factors and cytokines such as neuregulins, heparin-binding epidermal growth factor, tumor necrosis factor (TNF)-alpha, and TNF-related activation-induced cytokine. The ADAM19 gene was cloned from human, monkey, and mouse. It is expressed in multiple organs and tissues including heart, lung, bones, brain, spleen, liver, skeletal muscle, kidney, and testes. ADAM19 plays essential roles in embryo implantation, cardiovascular morphogenesis, neurogenesis, and other developmental processes. It has constitutive alpha-secretase activity associated with processing Alzheimer's disease amyloid precursor protein (APP) to non-amyloidogenic fragments; thus, it is neuroprotective. Those observations indicate that inhibition of ADAM19 activity is undesirable during embryo development and morphogenesis, and during the development of Alzheimer's disease. On the contrary, in adults, ADAM19 is upregulated in human brain tumors such as astrocytoma and glioblastoma and is correlated with the invasiveness of glioma. It is also over-expressed by many human cancerous cell lines including cancers of the colon, ovary, lung, and brain. Abnormally high expression of ADAM19 is also linked to inflammation and fibrosis of the lung and kidney. Targeted inhibition of ADAM19 may be crucial for the treatment of certain types of tumors and inflammatory diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.