Abstract

A disintegrin and metalloproteinase 17 (ADAM17) is significantly upregulated not only in malignant cells but also in the pro-inflammatory microenvironment of breast cancer. There, ADAM17 is critically involved in the processing of tumor-promoting proteins. Therefore, ADAM17 appears to be an attractive therapeutic target to address not only tumor cells but also the tumor-promoting environment. In a previous study, we generated a monoclonal anti-ADAM17 antibody (A300E). Although showing no complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity, the antibody was rapidly internalized by ADAM17-expressing cells and was able to transport a conjugated toxin into target cells. As a result, doxorubicin-coupled A300E or Pseudomonas exotoxin A-loaded A300E was able to kill ADAM17-expressing cells. This effect was strictly dependent on the presence of ADAM17 on the surface of target cells. As a proof of principle, both immunotoxins killed MDA-MB-231 breast cancer cells in an ADAM17-dependent manner. These data suggest that the use of anti-ADAM17 monoclonal antibodies as a carrier might be a promising new strategy for selective anti-cancer drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.