Abstract
Mutations in yeast ADA2, ADA3, and GCN5 weaken the activation potential of a subset of acidic activation domains. In this report, we show that their gene products form a heterotrimeric complex in vitro, with ADA2 as the linchpin holding ADA3 and GCN5 together. Further, activation by LexA-ADA3 fusions in vivo are regulated by the levels of ADA2. Combined with a prior observation that LexA-ADA2 fusions are regulated by the levels of ADA3 (N. Silverman, J. Agapite, and L. Guarente, Proc. Natl. Acad. Sci. USA 91:11665-11668, 1994), this finding suggests that these proteins also form a complex in cells. ADA3 can be separated into two nonoverlapping domains, an amino-terminal domain and a carboxyl-terminal domain, which do not separately complement the slow-growth phenotype or transcriptional defect of a delta ada3 strain but together supply full complementation. The carboxyl-terminal domain of ADA3 alone suffices for heterotrimeric complex formation in vitro and activation of LexA-ADA2 in vivo. We present a model depicting the ADA complex as a coactivator in which the ADA3 amino-terminal domain mediates an interaction between activation domains and the ADA complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.