Abstract
The phenomenon of rate-dependent adhesion has long been recognized as an intricate problem, and the so-far-developed physics and mechanics-based approaches resulted in analytical relations between the implicit form between the work of adhesion and the contact front velocity which are difficult to implement in practice. To address this issue in the framework of spherical indentation, the adhesion relaxation test in a nominal point contact is introduced to estimate the rate-dependent adhesion. Based on a stretched exponent approximation for the contact radius evolution with time, a relatively simple four-parameter model is proposed for the functional relation between the work of adhesion and the contact front velocity, and its fitting performance is compared to that of the known Greenwood-Johnson and Persson-Brener models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.