Abstract
BackgroundCell-penetrating peptides (CPPs) have been extensively exploited in gene therapy approaches as vectors for intracellular delivery of bioactive molecules. The ability of CPPs to be internalized into cells and their capacity to complex nucleic acids depend on their molecular structure, both primary and secondary, namely regarding hydrophobicity/hydrophilicity. CPP acylation has been used as a strategy to improve this structural feature. MethodsAcyl groups (from 6 to 18 carbon atoms) were attached to the S413-PV peptide and their effects on the peptide competence to complex siRNAs and to mediate gene silencing in glioblastoma (GBM) cells were studied. A systematic characterization of membrane interactions with S413-PV acyl-derivatives was also conducted, using different biophysical techniques (surface pressure-area isotherms in Langmuir monolayers, DSC and 31P NMR) to unravel a relationship between CPP biological activity and CPP effects on membrane stability and lipid organization. ResultsA remarkable concordance was noticed between acylated-S413-PV peptide competence to promote gene silencing in GBM cells and disturbance induced in membrane models, the lauroyl- and myristoyl-S413-PV peptides being the most effective. A cut-off effect was described for the first time regarding the influence of acyl-chain length on CPP bioactivity. ConclusionsC12-S413-PV showed high capacity to destabilize lipid bilayers, to escape from lysosomal degradation and to mediate gene silencing without promoting cytotoxicity. General significanceBesides unraveling a new CPP with high potential to be employed as a gene delivery vector, this work emphasizes the benefit from allying biophysical and biological studies towards a proper CPP structural refinement for successful pre-clinical/clinical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.