Abstract
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were isolated from microsomes obtained from normal and dystrophic human muscle and the fatty acid (FA) pattern estimated by GLC. In PC a decrease of the fatty acids of 16:0 and 18:2 and an increase of 18:0 and 18:1 was observed. In PE the decrease measured 18:2 and the increase 18:0 and 18:1. The acylation of lysophosphatidylcholine (LPC) and glycerol-3-phosphate (G3P) was measured in a microsomal system containing exogenously added LPC or G3P and labelled palmitic and oleic acid CoA esters. The incorporation of both labelled fatty acids in LPC-forming PC is reduced in dystrophic microsomes. On the other hand the acylation of glycerolphosphate and the formation of phosphatidic acid (PA) is greater in dystrophic microsomes when compared with normal controls. Possible correlations between the shifted FA pattern and the acylation rate by dystrophic microsomes measured in vitro in the two systems are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.