Abstract

Monomethoxypolyoxyethylene ( M w = 5000) was covalently linked to human hemoglobin via an amide bond formed between amino groups of the protein and a carboxylic group introduced onto the polymer. The conjugates thus obtained have a molecular size corresponding to that of a globular protein with a molecular weight of about 190 000. Their oxygen-binding properties depend upon the initial conformation of the hemoglobin and reaction pH; hemoglobin modified in the deoxy state exhibited a lower oxygen affinity than that modified in the oxy state, and the lower the reaction pH, the lower the oxygen affinity of polymer-linked hemoglobin. However, the affinity of modified hemoglobin is always higher than that of native hemoglobin. On the other hand, when deoxyHb was complexed with organic phosphates during the condensation reaction, the resulting conjugates exhibited oxygen-binding characteristics quite similar to those of native hemoglobin, i.e., the same oxygen affinity, slightly modified cooperativity and the same alkaline Bohr effect. Finally, in order to decrease the oxygen affinity of hemoglobin conjugates, the polymer was coupled to deoxy hemoglobin previously covalently modified with pyridoxal phosphate. The oxygen affinity of such conjugates was in fact as low as that of the initial pyridoxylated hemoglobin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call