Abstract
Polyoxometalates arise as significant catalysts in the field of organic chemistry due to their diverse properties and functions. Recent progress based on experimental evidence and density functional theory (DFT) calculations provides valuable information to demystify the chemistry of decatungstate anion, W10O32 4−. Particularly, functionalization of aldehydes by homolytic C–H bond cleavage can be efficiently achieved when it is catalyzed by this polyoxometalate. Two reaction mechanisms have been formulated to account for the role of W10O32 4− in organic chemical reactions: the single electron transfer and the hydrogen atom transfer (HAT) mechanisms. In this contribution, the HAT pathway for the acylation of dimethyl maleate is experimentally and quantum-chemically explored in detail. Results based on DFT calculations under the unrestricted formalism suggest that the acylation occurs in a barrierless process upon the formation of the lowest-in-energy triplet excited state of W10O32 4−. These outcomes agree well with the experimental evidence since the acylated adduct was produced at a 90% yield; in this regard, side reactions like radical couplings and decarbonylation resulted in less competitiveness. The current work may therefore help in the comprehension of the mechanistic details leading to the synthesis of organic compounds photocatalyzed by polyoxometalates, even under solar radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.