Abstract

A derivatization protocol based on the acylation of pinacolyl alcohol (PA), an important marker for the nerve agent soman, is presented. The procedure provides a convenient means of detecting, by gas chromatography-mass spectrometry (GC-MS), PA when present at a low concentration in a complex glycerol/alcohol-rich matrix. While there are only two reports describing the specific analysis of PA in matrices at low concentrations, the protocol described herein represents the first of its kind in the analysis of PA in a highly reactive matrix. Two alternative paths for the protocol's execution are presented. The first involves the direct derivatization of the PA with either acetyl or benzoyl chloride; both reactions yield ester products with significantly different retention times than those of the interferences of the reactive glycerol-rich matrix and in areas of the GC-chromatogram featuring lower levels of matrix interferences. A second procedure involved an initial diethyl ether/aqueous extraction of the matrix; while the extraction was found to substantially remove many of the hydrophilic matrix components and improve the overall derivatization, it also led to some loss of PA available for the derivatization. Both protocols were applied to the successful derivatization and analysis of PA by GC-MS when present at a 5μg.mL-1 concentration in a glycerol-rich matrix sample administered during the 48th Proficiency Test administered by the Organisation for the Prohibition of Chemical Weapons (OPCW).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call