Abstract

Quorum sensing regulates a variety of phenotypes in bacteria including the production of virulence factors. Salmonella spp. have quorum sensing systems mediated by three autoinducers (AI-1, AI-2, and AI-3). The AI-1-mediated system is incomplete in that the bacterium relies on the synthesis of signaling molecules by other microorganisms. This study aimed to evaluate the influence of the AI-1 N-dodecanoyl-DL-homoserine lactone (C12-HSL) on the growth, motility, adhesion, and biofilm formation of Salmonella enterica serovar Enteritidis PT4 578 on a polystyrene surface. Experiments were conducted at 37°C in anaerobic tryptone soy broth supplemented with C12-HSL and/or a mixture of four synthetic furanones, at the concentration of 50nM each. The planktonic growth, adhesion, swarming, and twitching motility were not altered in the presence of C12-HSL and/or furanones under anaerobic conditions. However, C12-HSL induced biofilm formation after 36h of cultivation as determined by quantification of biofilm formation, by enumeration of adhered cells to polystyrene coupons, and finally by imaging the presence of multilayered cells on an epifluorescence microscope. When furanones were present in the medium, an antagonistic effect against C12-HSL on the biofilm development was observed. The results demonstrate an induction of biofilm formation in Salmonella Enteritidis by AI-1 under anaerobic conditions. Considering that Salmonella does not produce AI-1 but respond to it, C12-HSL synthesized by other bacterial species could trigger biofilm formation by this pathogen in conditions that are relevant for its pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call