Abstract

Glucuronidation and CoA (coenzyme A) conjugation are common pathways for the elimination of carboxylic acid-containing drug molecules. In some instances, these biotransformations have been associated with toxicity (such as idiosyncratic hepatic injury, renal impairment, hemolytic anemia, gastrointestinal inflammation, and bladder cancer) attributed to, in part, the propensity of acyl glucuronides and acyl CoA thioesters to covalently modify biological macromolecules such as proteins and DNA. It is to be noted that, while acyl glucuronidation and CoA conjugation are indeed implicated in adverse effects, there are many safe drugs in the market that are cleared by these reactive pathways. It is therefore important that new molecular entities with carboxylic acid groups are evaluated for toxicity in a manner that is not unreasonably risk-averse. In the absence of truly predictable methods, therefore, the general approach is to apply a set of end points to generate a weight-of-evidence evaluation. In practice, the focus is to identify structural liabilities and provide structure-activity recommendations early in the program, at a stage where an attempt to improve reactive metabolism does not deoptimize other critical drug-quality criteria. This review will present a high-level overview of the chemistry of glucuronidation and CoA conjugation and provide a discussion of the possible mechanisms of adverse effects that have been associated with these pathways, as well as how such potential hazards are addressed while delivering a new chemical entity for clinical evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call