Abstract

We have performed a detailed investigation of the effects on platelet function of coenzyme A (CoA) and several acyl-CoAs. Platelet aggregation was measured by turbidimetry and by platelet counting; platelet shape change was measured using light scattering; P-selectin, Ca2+ mobilization and vasodilator-stimulated phosphoprotein (VASP) phosphorylation were measured by flow cytometry. The compounds investigated inhibited ADP-induced platelet aggregation; those with saturated acyl groups containing 16-18 carbons were most effective. The effects of palmitoyl-CoA (16:0) were studied in depth. It inhibited platelet shape change and Ca2+ mobilization brought about by ADP (but not other agonists) indicating antagonism at P2Y1 receptors, and also inhibited ADP-induced P-selectin expression. Effects of palmitoyl-CoA on the platelet aggregation and Ca2+ mobilization induced by several different agonists and agonist combinations were compared with those of MRS 2179 (a P2Y1 antagonist) and AR-C69931 (a P2Y12 antagonist), and were consistent with palmitoyl-CoA acting mainly at P2Y1 but also with partial antagonism at P2Y12 receptors. Antagonism at P2Y12 receptors was confirmed in studies of VASP-phosphorylation. Palmitoyl-CoA did not act as an antagonist at P2X1 receptors. The results are discussed in relation to the possibility that acyl-CoAs may contribute as endogenous modulators of platelet function and might serve as lead compounds for the design of novel antithrombotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.