Abstract

During neurodevelopment neurons increase phospholipid synthesis to generate additional plasma membrane that makes up the growing neurites. Compared with most cell types, neurons contain a high percentage of the polyunsaturated fatty acids (PUFAs) arachidonic acid (AA) and docosahexaenoic acid (DHA). By utilizing PC12 cell lines as a model neuronal cell line, we examined the internalization rate of AA, DHA, and non-essential oleic acid (OA), as well as their effects on neurite outgrowth. When wild type cells were differentiated, the rate of AA and DHA internalization increased 50% more than the rate of OA internalization. When media were supplemented with AA or DHA, the average neurite length was increased by approximately 40%, but supplementation with the same amount of OA had no effect. We also increased the levels of acyl-CoA synthetase-1 (ACS1) and ACS2 proteins to determine whether they contribute to PUFA internalization or neurite outgrowth. Overexpression of ACS1 increased the rate of OA internalization by 55%, and AA and DHA uptake was increased by 25%, but there was no significant change in neurite outgrowth. In ACS2-overexpressing cells, in contrast, the rate of OA internalization increased by 90%, AA by 115%, and DHA by 70%. The average aggregate neurite length in ACS2-overexpressing cells was increased by approximately 40% when the media were supplemented with PUFAs, but there was no change with OA supplementation. Taken together, these results support the hypotheses that ACSs are rate-limiting for fatty acid internalization and that ACS2 enhances neurite outgrowth by promoting PUFA internalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.