Abstract

A variety of experimental methods indicate unique biophysical properties of membranes containing the highly polyunsaturated ω-3 fatty acid, docosahexaenoic acid (DHA). In the following we review the atomically detailed picture of DHA acyl chains structure and dynamics that has emerged from computational studies of this system in our lab. A comprehensive approach, beginning with ab-initio quantum chemical studies of model compounds representing segments of DHA and ending with large scale classical molecular dynamics simulations of DHA-containing bilayers, is described with particular attention paid to contrasting the properties of DHA with those of saturated fatty acids. Connection with experiment is made primarily through comparison with Nuclear Magnetic Resonance (NMR) studies, particularly those that probe details of the chain structure and dynamics. Our computational results suggest that low torsional energy barriers, comparable to kT at physiological conditions, for the rotatable bonds in the DHA chain are the key to the differences observed between polyunsaturated and saturated acyl chains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call