Abstract
Based on the algorithmic proof of Lovász local lemma due to Moser and Tardos, Dujmović et al. (2016) initiated the use of the so-called entropy compression method for graph coloring problems. Then, using the same approach Esperet and Parreau (2013) proved new upper bounds for several chromatic numbers, and explained how that approach could be used for many different coloring problems. Here, we follow this line of research for the particular case of acyclic coloring: we show that every graph with maximum degree Δ has acyclic chromatic number at most 32Δ43+O(Δ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.