Abstract
Background:It has been suggested that individuals predisposed to or recovered from anorexia nervosa experience a hyperserotonergic state associated with anxiety that might be mitigated by restricted food intake, because diminished levels of the tryptophan precursor lower the central availability of serotonin (5-HT). At the neural level, the salience network is a system of functionally connected brain regions; it has been closely associated with 5-HT functioning and mental disorders (including anorexia nervosa). The aim of the present study was to investigate the effect on the salience network of a temporary dietary manipulation of 5-HT synthesis in patients with anorexia nervosa.Methods:In this double-blind crossover study, we obtained data on resting-state functional connectivity from 22 weight-recovered female patients with a history of anorexia nervosa, and 22 age-matched female healthy controls. The study procedure included acute tryptophan depletion (a dietary intervention that lowers the central 5-HT synthesis rate) and a sham condition.Results:We identified an interaction of group and experimental condition in resting-state functional connectivity between the salience network and the orbitofrontal cortex extending to the frontal pole (F1,42 = 12.52; pFWE = 0.026). Further analysis revealed increased resting-state functional connectivity during acute tryptophan depletion in patients recovered from anorexia nervosa, resembling that of healthy controls during the sham condition (T42 = −0.66; p = 0.51).Limitations:The effect of acute tryptophan depletion on the central availability of 5-HT can be judged only indirectly using plasma ratios of tryptophan to large neutral amino acids. Moreover, the definition of anorexia nervosa recovery varies widely across studies, limiting comparability.Conclusion:Taken together, our findings support the notion of 5-HT dysregulation in anorexia nervosa and indicate that reduced 5-HT synthesis and availability during acute tryptophan depletion (and possibly with food restriction) may balance hyperserotonergic functioning and the associated resting-state functional connectivity of the salience network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.