Abstract

Mathematical models are presented for the acute median lethal concentrations of major geochemical ions (Na+ , K+ , Ca2+ , Mg2+ , Cl- , SO4 2- , HCO3 - /CO3 2- ) to fathead minnows (Pimephales promelas), based on an extensive series of experiments presented in a companion article. Toxicity relationships across different dilution waters, individual salts, and salt mixtures suggest six independent mechanisms of toxicity to consider in modeling efforts, including Mg/Ca-specific toxicity, osmolarity-related toxicity, SO4 -specific toxicity, K-specific toxicity, effects of high pH/alkalinity, and a multiple ion-related toxicity at low Ca distinct from the other mechanisms. Models are evaluated using chemical activity-based exposure metrics pertinent to each mechanism, but concentration-based alternative models that are simpler to apply are also addressed. These models are compared to those previously provided for Ceriodaphnia dubia, and various issues regarding their application to risk assessments are discussed. Environ Toxicol Chem 2022;41:2095-2106.© 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.