Abstract
Exposure to a chemical warfare nerve agent (CWNA) leads to severe respiratory distress, respiratory failure, or death if not treated. We investigated the toxic effects of nerve agent VX on the respiratory dynamics of guinea pigs following exposure to 90.4 μg/m3 of VX or saline by microinstillation inhalation technology for 10 min. Respiratory parameters were monitored by whole-body barometric plethysmography at 4, 24, and 48 h, 7 d, 18 d, and 4 wk after VX exposure. VX-exposed animals showed a significant decrease in the respiratory frequency (RF) at 24 and 48 h of recovery (p value.0329 and.0142, respectively) compared to the saline control. The tidal volume (TV) slightly increased in VX exposed animals at 24 and significantly at 48 h (p = .02) postexposure. Minute ventilation (MV) increased slightly at 4 h but was reduced at 24 h and remained unchanged at 48 h. Animals exposed to VX also showed an increase in expiratory (Te) and relaxation time (RT) at 24 and 48 h and a small reduction in inspiratory time (Ti) at 24 h. A significant increase in end expiratory pause (EEP) was observed at 48 h after VX exposure (p = .049). The pseudo lung resistance (Penh) was significantly increased at 4 h after VX exposure and remained slightly high even at 48 h. Time-course studies reveal that most of the altered respiratory dynamics returned to normal at 7 d after VX exposure except for EEP, which was high at 7 d and returned to normal at 18 d postexposure. After 1 mo, all the monitored respiratory parameters were within normal ranges. Bronchoalveolar lavage (BAL) 1 mo after exposure showed virtually no difference in protein levels, cholinesterase levels, cell number, and cell death in the exposed and control animals. These results indicate that sublethal concentrations of VX induce changes in respiratory dynamics and functions that over time return to normal levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.