Abstract

Hypoxia elicits a multitude of tissue responses depending on the severity and duration of the exposure. While chronic hypoxia is shown to impact development, regeneration, and cancer, the understanding of the threats of acute (i.e., short-term) hypoxia is limited mainly due to its transient nature. Here, a novel gelatin-dextran (Gel-Dex) hydrogel is established that decouples hydrogel formation and oxygen consumption and thus facilitates 3D sprouting from endothelial spheroids and, subsequently, induces hypoxia "on-demand." The Gel-Dex platform rapidly achieves acute moderate hypoxic conditions without compromising its mechanical properties. Acute exposure to hypoxia leads to increased endothelial cell migration and proliferation, promoting the total length and number of vascular sprouts. This work finds that the enhanced angiogenic response is mediated by reactive oxygen species, independently of hypoxia-inducible factors. Reactive oxygen species-dependent matrix metalloproteinases activity mediated angiogenic sprouting is observed following acute hypoxia. Overall, the Gel-Dex hydrogel offers a novel platform to study how "on-demand" acute moderate hypoxia impacts angiogenesis, with broad applicability to the development of novel sensing technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.