Abstract

Since fish show daily rhythms in most physiological functions, it should not be surprising that stressors may have different effects depending on the timing of exposure. In this study, we investigated the influence of time of day on the stress responses, at both physiological and cellular levels, in gilthead sea bream (Sparus aurata L.) submitted to air exposure for 30 s and then returned to their tank. One hour after air exposure, blood, hypothalamus and liver samples were taken. Six fish per experimental group (control and stressed) were sampled every 4 h during a 24-h cycle. Fish were fed in the middle of the light cycle (ML) and locomotor activity rhythms were recorded using infrared photocells to determine their daily activity pattern of behaviour, which showed a peak around feeding time in all fish. In the control group, cortisol levels did not show daily rhythmicity, whereas in the stressed fish, a daily rhythm of plasma cortisol was observed, being the average values higher than in the control group, with increased differences during the dark phase. Blood glucose showed daily rhythmicity in the control group but not in the stressed one which also showed higher values at all sampling points. In the hypothalamus of control fish, a daily rhythm of corticotropin-releasing hormone (crh) gene expression was observed, with the acrophase at the beginning of the light phase. However, in the stressed fish, this rhythm was abolished. The expression of crh-binding protein (crhbp) showed a peak at the end of the dark phase in the control group, whereas in the stressed sea bream, this peak was found at ML. Regarding hepatic gene expression of oxidative stress biomarkers: (i) cytochrome c oxidase 4 showed daily rhythmicity in both control and stressed fish, with the acrophases located around ML, (ii) peroxiredoxin (prdx) 3 and 5 (prdx5) only presented daily rhythmicity of expression in the stressed fish, with the acrophase located at the beginning of the light cycle and (iii) uncoupling protein 1 showed significant differences between sampling points only in the control group, with significantly higher expression at the beginning of the dark phase. Taken together, these results indicate that stress response in gilthead sea bream is time-dependent as cortisol level rose higher at night, and that different rhythmic mechanisms interplay in the control of neuroendocrine and cellular stress responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.