Abstract

Exposure to acute stress leads to diverse changes, which include either beneficial or deleterious effects on molecular levels that are implicated in stress-related disorders. N-methyl-d-aspartate receptor (NMDAR)-mediated signalings, are thought to be vital players in stress-related mental disorders as well as attractive therapeutic targets for clinical treatment. In the present study, we utilized acute stress models in mice to explore regulation of phosphorylation level of S1284 in GluN2B subunit of NMDAR. We found out that forced swimming and acute restraint stress increased phosphorylation level of S1284, while phosphorylation level of S1284 was unaltered after brief exposure to open field. Moreover, phosphorylation change of S1284 was negated by treatment of roscovitine which is believed to be a Cyclin-dependent kinase inhibitor. Besides, we showed well correlation of phosphorylation change of S1284 and immobility time during forced swimming. Collectively, our results demonstrated that phosphorylation level of S1284 in GluN2B was regulated by acute stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call