Abstract
Adult C57BL/6J mice are known to exhibit high level of social flexibility while mice lacking the β2 subunit of nicotinic receptors (β2−/− mice) present social rigidity. We asked ourselves what would be the consequences of a restraint acute stress (45 min) on social interactions in adult mice of both genotypes, hence the contribution of neuronal nicotinic receptors in this process. We therefore dissected social interaction complexity of stressed and not stressed dyads of mice in a social interaction task. We also measured plasma corticosterone levels in our experimental conditions. We showed that a single stress exposure occurring in adulthood reduced and disorganized social interaction complexity in both C57BL/6J and β2−/− mice. These stress-induced maladaptive social interactions involved alteration of distinct social categories and strategies in both genotypes, suggesting a dissociable impact of stress depending on the functioning of the cholinergic nicotinic system. In both genotypes, social behaviors under stress were coupled to aggressive reactions with no plasma corticosterone changes. Thus, aggressiveness appeared a general response independent of nicotinic function. We demonstrate here that a single stress exposure occurring in adulthood is sufficient to impoverish social interactions: stress impaired social flexibility in C57BL/6J mice whereas it reinforced β2−/− mice behavioral rigidity.
Highlights
Social interactions involve highly integrative and adapted behaviors to make coherent decisions in specific environmental contexts
We demonstrate here that a single stress exposure occurring in adulthood is sufficient to impoverish social interactions: stress impaired social flexibility in C57BL/6J mice whereas it reinforced β2−/− mice behavioral rigidity
We revealed a crucial importance of dominance behaviors: in C57BL/6J mice dominance was associated with a large panel of social contact but this was not the case in β2−/− mice, for which dominance seemed an isolated compound (Figure 6), quantitatively over represented (Table 2)
Summary
Social interactions involve highly integrative and adapted behaviors to make coherent decisions in specific environmental contexts. Sometimes competing, choices that integrate both physiological and psychological parameters that are peculiar to the individual. Among these parameters, those that affect emotional, motivational, and memory processes are crucial (Adolphs, 2010; Gasbarri and Tomaz, 2012; Adolphs and Anderson, 2013). Aggressive behavior is common and adaptive between rodents of the same species and, like all mammals, they cope with social threats by making physiological and behavioral adjustments that can increase their ability to escape or fight. The consequences of acute stress on the complexity of social interactions have received little attention to date, despite the fact that, in people’s minds, it is widely believed that acute stress can produce disproportionate
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.