Abstract
Human Endogenous Retroviruses (HERVs) are fossil viruses that composes 8% of the human genome and plays several important roles in human physiology, including muscle repair/myogenesis. It is believed that inflammation may also regulate HERV expression, and therefore may contribute in the muscle repair, especially after training exercise. Hence, this study aimed to assess the level of HERVs expression and inflammation profile in practitioners' resistance exercises after an acute strength training session. Healthy volunteers were separated in regular practitioners of resistance exercise training group (REG, n = 27) and non-trained individuals (Control Group, n = 20). All individuals performed a strength exercise section. Blood samples were collected before the exercise (T0) and 45 minutes after the training session (T1). HERV-K (HML1-10) and W were relatively quantified, cytokine concentration and circulating microparticles were assessed. REG presented higher level of HERV-W expression (~2.5 fold change) than CG at T1 (p<0.01). No difference was observed in the levels of HERV-K expression between the groups as well as the time points. Higher serum TNF-α and IL-10 levels were verified post-training session in REG and CG (p<0.01), and in REG was found a positive correlation between the levels of TNF-α at T1 and IL-10 at T0 (p = 0.01). Finally, a lower endothelial microparticle percentage was observed in REG at T1 than in T0 (p = 0.04). REG individuals exhibited a significant upregulation of HERV-W and modulation of inflammatory markers when compared to CG. This combined effect could potentially support the process of skeletal muscle repair in the exercised individuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.