Abstract

The use of salt in the management and culture of freshwater fishes is a quite common practice, either to fight infection or to possibly reduce the stress of transport, through reduction in the metabolic cost of hyper-regulation. Increased salinity, depending on the salt concentration used and the species, can be in itself a stress factor. This study aimed at evaluating and comparing the physiological effects of exposure to increased salinity in P. mesopotamicus (Pacu), C. macropomum (Tambaqui) and their hybrid (Tambacu), as well as to test the resistance of the hybrid when compared to its two parent species. Fishes (n=38 each) were submitted to 5, 15, and 25psu for 1h. Osmolality, ions, and glucose were assayed in plasma, tissue hydration levels were quantified in gills and muscle, carbonic anhydrase activity (CAA) was assayed in gills and kidneys, and the expression of heat shock proteins (HSP70) was evaluated in muscle. All 3 fishes showed similar disturbance in osmotic homeostasis when exposed to 25psu; the tambaqui displayed higher glycemia than the other fishes, in 15 and 25psu. In this salinity the fish showed increased osmolality, Na+, Cl− and Mg2+ concentrations, as well as a reduction in muscle hydration. The tambacu showed lower potassium and higher magnesium in 25psu than the other fishes. CAA was variably sensitive to salinity in the two species and the hybrid. No effects of salinity on tissue HSP70 expression were observed. Tambacus are similar in robustness to their parent species. The markers investigated showed that the three fishes tolerate exposure for 1h at 10psu; this concentration can be used for prophylactic or anesthetic purposes, but should not be exceeded, as it can offer significant homeostatic challenges to these fishes. Statement of relevanceRare studies on the comparative physiology of parent species and their hybrid, with commercial interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.