Abstract

As an environmental risk factor, psychological stress may trigger the onset or accelerate the progression of Parkinson's disease (PD). Here, we evaluated the effects of acute restraint stress on striatal dopaminergic terminals and the brain metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which has been widely used for creating a mouse model of PD. Exposure to 2h of restraint stress immediately after injection of a low dose of MPTP caused a severe loss of striatal dopaminergic terminals as indicated by decreases in the dopamine transporter protein and dopamine levels compared with MPTP administration alone. Both striatal 1-methyl-4-phenylpyridinium ion (MPP+) and MPTP concentrations were significantly increased by the application of restraint stress. Striatal monoamine oxidase-B, which catalyzes the oxidation of MPTP to MPP+, was not changed by the restraint stress. Our results indicate that the enhanced striatal dopaminergic terminal loss in the stressed mice is associated with an increase in the transport of neurotoxin into the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.