Abstract

This study aimed to investigate acute psychophysiological responses to repeated-sprint training in hypoxia (RSH) combined with whole-body cryotherapy (WBC). Sixteen trained cyclists performed 3 sessions in randomized order: RSH, WBC-RSH (WBC pre-RSH), and RSH-WBC (WBC post-RSH). RSH consisted of 3 sets of 5 × 10-second sprints with 20-second recovery at a simulated altitude of 3000m. Power output, muscle oxygenation (tissue saturation index), heart-rate variability, and recovery perception were analyzed. Sleep quality was assessed on the nights following test sessions and compared with a control night using nocturnal ActiGraphy and heart-rate variability. Power output did not differ between the conditions (P = .27), while the decrease in tissue saturation index was reduced for WBC-RSH compared to RSH-WBC in the last set. In both conditions with WBC, the recovery perception was higher compared to RSH (WBC-RSH: +15.4%, and RSH-WBC: +21.9%, P < .05). The number of movements during the RSH-WBC night was significantly lower than for the control night (-18.7%, P < .01) and WBC-RSH (-14.9%, P < .05). RSH led to a higher root mean square of the successive differences of R-R intervals and high-frequency band during the first hour of sleep compared to the control night (P < .05) and RSH-WBC (P < .01). Inclusion of WBC in an RSH session did not modify the power output but could improve prolonged performance in hypoxia by maintaining muscle oxygenation. A single RSH session did not deteriorate sleep quality. WBC, particularly when performed after RSH, positively influenced recovery perception and sleep.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call