Abstract

Renal ischemia/reperfusion (I/R) injury and the acute respiratory distress syndrome (ARDS) frequently coexist in the intensive care setting, and this combination is associated with a high mortality. Recent experimental data demonstrate that renal I/R injury leads to an increase in pulmonary vascular permeability, similar to that observed in ARDS. However, the effects of renal I/R injury on alveolar fluid clearance-of potential importance in the setting of increased permeability-are unknown. We investigated the effects of renal I/R injury on pulmonary epithelial sodium channel (ENaC), Na,K-ATPase and aquaporin expression as a first step in addressing this question. Sprague Dawley rats were subjected to four protocols: (1) surgery for bilateral I/R injury, (2) sham surgery, (3) surgery for unilateral I/R injury, or (4) bilateral nephrectomy. Lung tissue was examined for Na channel, Na,K-ATPase, aquaporin-1, and aquaporin-5 expression. Northern and Western blots were performed. Renal I/R injury and bilateral nephrectomy both led to marked down-regulation of pulmonary ENaC, Na,K-ATPase and aquaporin-5 but not aquaporin-1 compared to sham surgery. These changes were not influenced by the animals' volume status. In contrast, unilateral I/R with an intact contralateral kidney did not lead to down-regulation of channel down-regulation. Ischemic acute renal failure leads to down regulation of pulmonary ENaC, Na,K-ATPase and aquaporin-5, but not aquaporin-1. Since bilateral nephrectomy but not single kidney I/R injury also leads to lung changes, these changes are likely mediated by systemic effects of acute renal failure (ARF), such as "uremic toxins," rather than reperfusion products. These changes may modulate lung dysfunction, susceptibility to lung injury, or both.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.