Abstract

Aims/hypothesisThis study aimed to investigate the acute renal effects of the glucagon-like peptide-1 receptor agonist (GLP-1RA) exenatide in type 2 diabetes patients.MethodsWe included overweight (BMI 25–40 kg/m2) men and postmenopausal women, aged 35–75 years with type 2 diabetes (HbA1c 48–75 mmol/mol; 6.5–9.0%) and estimated GFR ≥ 60 ml min−1 1.73 m−2. Exenatide or placebo (NaCl solution, 154 mmol/l) was administrated intravenously in an acute, randomised, double-blind, placebo-controlled trial conducted at the Diabetes Center VU University Medical Center (VUMC). GFR (primary endpoint) and effective renal plasma flow (ERPF) were determined by inulin and para-aminohippurate clearance, respectively, based on timed urine sampling. Filtration fraction (FF) and effective renal vascular resistance (ERVR) were calculated, and glomerular hydrostatic pressure (PGLO) and vascular resistance of the afferent (RA) and efferent (RE) renal arteriole were estimated. Tubular function was assessed by absolute and fractional excretion of sodium (FENa), potassium (FEK) and urea (FEU), in addition to urine osmolality, pH and free water clearance. Renal damage markers, BP and plasma glucose were also determined.ResultsOf the 57 patients randomised by computer, 52 were included in the final analyses. Exenatide (n = 24) did not affect GFR (mean difference +2 ± 3 ml min−1 1.73 m−2, p = 0.489), ERPF, FF, ERVR or PGLO, compared with placebo (n = 28). Exenatide increased RA (p < 0.05), but did not change RE. Exenatide increased FENa, FEK, urine osmolality and pH, while FEU, urinary flow and free water clearance were decreased (all p < 0.05). Osmolar clearance and renal damage makers were not affected. Diastolic BP and mean arterial pressure increased by 3 ± 1 and 6 ± 2 mmHg, respectively, whereas plasma glucose decreased by 1.4 ± 0.1 mmol/l (all p < 0.05).Conclusions/interpretationExenatide infusion does not acutely affect renal haemodynamics in overweight type 2 diabetes patients at normal filtration levels. Furthermore, acute GLP-1RA administration increases proximal sodium excretion in these patients.Trial registrationClincialTrials.gov NCT01744236FundingThe research leading to these results has been funded from: (1) the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 282521 – the SAFEGUARD project; and (2) the Dutch Kidney Foundation, under grant agreement IP12.87.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-016-3938-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users.

Highlights

  • Diabetic kidney disease (DKD) has become the leading cause of chronic and end-stage renal disease worldwide

  • We demonstrate that acute intravenous administration of exenatide does not affect gold-standard-measured GFR and effective renal plasma flow (ERPF) in these patients

  • Previous findings by Gutzwiller et al showed that Glucagon-like peptide (GLP)-1 infusion reduced creatinine clearance measured GFR in 16 obese, hyperfiltrating, insulin-resistant men from 151 ml/min to 142 ml/min [6]

Read more

Summary

Introduction

Diabetic kidney disease (DKD) has become the leading cause of chronic and end-stage renal disease worldwide. After Food and Drug Administration (FDA) approval of the first GLP-1RA (exenatide) in the USA in 2005, sporadic case reports described the occurrence of acute renal failure following treatment initiation in type 2 diabetes patients. To date, such associations have not been supported by large database analyses or (ongoing) clinical trials [4]. GLP-1RAs reduce albuminuria, a surrogate renal endpoint, in numerous phase III clinical trials [1, 3], and albuminuria progression was reduced in the cardiovascular safety outcome study of the GLP-1RA lixisenatide in patients with type 2 diabetes [5]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call