Abstract

Cystic fibrosis (CF) is characterized by an excessive and prolonged inflammatory response to Pseudomonas aeruginosa in the lung. There are high levels of cytokines and chemokines and an exaggerated PMN influx causing significant morbidity and mortality. To compare the kinetics of the inflammatory response with the kinetics of clearance of acute bacterial challenge in the lungs of CF and wild-type (WT) mice. We challenged CF knockout (KO) and WT mice intratracheally with P aeruginosa in suspension and evaluated bacteria counts, nuclear factor-kappaB (NF-kappaB), and inhibitor of NF-kappaB alpha protein (I-kappaBalpha) in lung tissue, cytokines, and PMN in bronchoalveolar lavage (BAL). Both groups of mice cleared the infection with the same kinetics. CF-KO mice had more PMN in BAL than WT mice. CF-KO mice had high concentrations of proinflammatory cytokines in BAL on days 2 and 4, whereas cytokines in BAL from WT mice were only slightly elevated. CF-KO mice failed to regenerate I-kappaBalpha once it was degraded, and consequently had prolonged and excessive activation of NF-kappaB for the entire 6-day duration of the study. In contrast, WT mice showed only slight NF-kappaB activation, which plateaued at day 4. These data suggest that NF-kappaB is dysregulated in CF lung infection and could be a good target for therapy. Prolonged responses to initial acute infections may contribute to the eventual establishment of chronic persistent inflammation. Dysregulation of the I-kappaB/NF-kappaB pathway in cystic fibrosis leads to prolonged cytokine secretion and persistent inflammation in response to acute challenges and may be important in the development of chronic lung inflammation and infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.