Abstract

Zebrafish has emerged as a valuable model for immunological studies. However, little is known about the overall picture of its immune response to infectious pathogens. Here we present the first systematic study of its immune response to Aeromonas salmonicida and Staphylococcus aureus, a Gram-negative and a Gram-positive bacteria, respectively. Genes induced upon infection were identified with suppression subtractive hybridization, with many of them encoding acute phase proteins (APPs). When compared with mammals, striking similarities and obvious differences have been observed. Both similar APPs (SAA, hepcidin and haptoglobin, etc.) and a similar system for the induction of APPs (which involves the TLRs, pro-inflammatory cytokines and C/EBPs) were identified, implying evolutionary conserved mechanisms among fish and mammals. Some novel APPs were also discovered, suggesting different immune strategies adopted by fish species. Among which, LECT2 was induced by up to 1000-fold upon infection, shedding new lights on the function of this gene. Our results constitute the first demonstration of a similar while different immune response in zebrafish and open new avenues for the investigation of evolutionary conserved and fish specific mechanisms of innate immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.