Abstract

Simple SummaryUR-144 is a synthetic cannabinoid found in herbal incenses for recreational use as a substitute of cannabis. It is a cannabinoid receptor agonist with effects on the central nervous system similar to those of THC. Several cases of intoxication involving UR-144 consumption have been reported. An observational study was carried out to assess UR-144 acute pharmacological effects in comparison with cannabis measuring biomarkers of disposition in oral fluid. Both UR-144 and THC increased blood pressure and heart rate. THC induced stimulant-like and high effects significantly more than those of UR-144 and the two parent drugs could be measured in oral fluid as biomarkers of consumption within 3 h following smoking of the substance.Synthetic cannabinoids (SCs) are one of the most frequent classes of new psychoactive substances monitored by the EU Early Warning System and World Health Organization. UR-144 is a SC with a relative low affinity for the CB1 receptor with respect to that for the CB2 receptor. As with other cannabinoid receptor agonists, it has been monitored by the EU Early Warning System since 2012 for severe adverse effects on consumers. Since data for UR-144 human pharmacology are very limited, an observational study was carried out to evaluate its acute pharmacological effects following its administration using a cannabis joint as term of comparison. Disposition of UR-144 and delta-9-tetrahydrocannibinol (THC) was investigated in oral fluid. Sixteen volunteers smoked a joint prepared with tobacco and 1 or 1.5 mg dose of UR-144 (n = 8) or cannabis flowering tops containing 10 or 20 mg THC (n = 8). Physiological variables including systolic and diastolic blood pressure, heart rate and cutaneous temperature were measured. A set of Visual Analog Scales (VAS), the Addiction Research Centre Inventory (ARCI)-49-item short form version and the Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) were administered to evaluate subjective effects. Oral fluid was collected at baseline, 10, 20, 40 min and 1, 2, 3 and 4 h after smoking, for UR-144 or THC concentration monitoring. Results showed significant statistical increases in both systolic and diastolic blood pressure and heart rate after both UR-144 and cannabis smoking. Both substances produced an increase in VAS related to stimulant-like and high effects, but scores were significantly higher after cannabis administration. No hallucinogenic effects were observed. Maximal oral fluid UR-144 and THC concentrations appeared at 20 and 10 min after smoking, respectively. The presence of UR-144 in oral fluid constitutes a non-invasive biomarker of SC consumption. The results of this observational study provide valuable preliminary data of the pharmacological effects of UR-144, showing a similar profile of cardiovascular effects in comparison with THC but lower intensity of subjective effects. Our results have to be confirmed by research in a larger sample to extensively clarify pharmacological effects and the health risk profile of UR-144.

Highlights

  • Cannabis is the most commonly used illegal psychotropic drug, primarily consumed for recreational purposes [1,2]

  • The sixteen healthy subjects recruited for the study were polydrug recreational users who reported previous multiple experience with cannabis and had used synthetic cannabinoids (SCs) at least once in their lives

  • Four males self-administered a dose of 1.5 mg while three males and one female self-administered 1 mg substance mixed with tobacco

Read more

Summary

Introduction

Cannabis is the most commonly used illegal psychotropic drug, primarily consumed for recreational purposes [1,2]. There are more than 480 identifiable chemical constituents known in the cannabis plant and about 85 different cannabinoids have been isolated,. ∆9 -tetrahidrocannabinol (THC) being the psychoactive one [3]. It is known that THC primarily acts as a partial agonist on two cannabinoid receptors CB1 and CB2, mediated by the G-protein-coupling. CB1 receptors are located mainly in neurons of the central and peripheral nervous system [4]. The primary effect of cannabinoids in these receptors is the inhibition of synaptic transmission, which causes changes of mood and perception, such as pain sensation, sleep, body temperature or food intake [5].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call