Abstract

Lauver, JD, Cayot, TE, Rotarius, TR, and Scheuermann, BW. Acute neuromuscular and microvascular responses to concentric and eccentric exercises with blood flow restriction. J Strength Cond Res 34(10): 2725-2733, 2020-The purpose of this study was to investigate the effects of the addition of blood flow restriction (BFR) during concentric and eccentric exercises on muscle excitation and microvascular oxygenation status. Subjects (N = 17) were randomly assigned to either a concentric (CON, CON + BFR) or eccentric (ECC, ECC + BFR) group, with one leg assigned to BFR and the other to non-BFR. Surface electromyography and near-infrared spectroscopy were used to measure muscle excitation and microvascular deoxygenation (deoxy-[Hb + Mb]) and [total hemoglobin concentration] during each condition, respectively. On separate days, subjects completed 4 sets (30, 15, 15, 15) of knee extension exercise at 30% maximal torque, and 1 minute of rest was provided between the sets. Greater excitation of the vastus medialis was observed during CON + BFR (54.4 ± 13.3% maximal voluntary isometric contraction [MVIC]) and ECC + BFR (53.0 ± 18.0% MVIC) compared with CON (42.0 ± 10.8% MVIC) and ECC (46.8 ± 9.6% MVIC). Change in deoxy-[Hb + Mb] was greater during CON + BFR (10.0 ± 10.4 μM) than during CON (4.1 ± 4.0 μM; p < 0.001). ECC + BFR (7.8 ± 6.7 μM) was significantly greater than ECC (3.5 ± 4.7 μM; p = 0.001). Total hemoglobin concentration was greater for ECC + BFR (7.9 ± 4.4 μM) compared with ECC (5.5 ± 3.5 μM). The addition of BFR to eccentric and concentric exercises resulted in a significant increase in metabolic stress and muscle excitation compared with non-BFR exercise. These findings suggest that although BFR may increase the hypertrophic stimulus during both modes of contraction, BFR during concentric contractions may result in a greater stimulus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.