Abstract

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to cause a Parkinsonian syndrome in man and non-human primates. Hypotheses concerning the pathogenetic mechanisms of MPTP toxicity on nigro-striatal dopaminergic neurons relate to impairment of mitochondrial function and oxidative stress. However, surprisingly few primate studies addressed these issues ex vivo. Thus, the present study assessed the enzyme activities of the respiratory chain, GSH/GSSG and ubiquinol/ubiquinone content in the MPTP primate model (common marmoset, Callithrix jacchus; 2 mg MPTP-hydrochloride/kg body wt were injected subcutaneously (s.c.) on four consecutive days; animals were sacrificed 7 days after last MPTP exposure). Activities of respiratory chain enzymes were measured in crude homogenates of the caudate nucleus, because the probable toxic metabolite of MPTP, MPP +, is transported into dopaminergic neurons via the dopamine uptake system in striatal synapses and mitochondria are concentrated in axonal terminals. Since MPP + can damage membranes of axonal terminals of nigro-striatal neurons we measured GSH/GSSG contents in the putamen and ubiquinol/ubiquinone concentrations in the substantia nigra and putamen as indices of oxidative damage. At the time of sacrifice MPTP-induced deficits comprised severe behavioural Parkinsonian symptoms, profound depletion of striatal dopamine and its major metabolites as well as pronounced loss of nigro-striatal neurons. Despite these severe lesions, acute MPTP treatment had no effect on any of the enzymes of the respiratory chain in the caudate nucleus and indices of oxidative damage in both the substantia nigra and putamen. These results suggest that factors other than mitochondrial impairment and/or oxidative stress may be involved in MPTP neurotoxicity in primates. Alternatively, early compensatory mechanisms and/or transient effects could account for the reported results and will be discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.