Abstract

Metabolic acidosis induces net calcium efflux from bone through a decrease in osteoblastic formation and an increase in osteoclastic resorption. We tested the hypothesis that changes in external pH would alter the expression of genes critical to the function of mouse calvarial bone cells, predominantly osteoblasts. Cells were cultured in physiologically neutral pH medium until confluent and then stimulated with fresh medium at either neutral or acidic pH. Among a group of immediate early response genes, including egr-1, junB, c-jun, junD, and c-fos, only egr-1 stimulation was modulated by changes in medium pH. At pH 7.4, RNA for egr-1 was stimulated approximately 10- to 30-fold, 40 min after medium change. A progressive decrease in pH to 6.8 led to a parallel reduction in egr-1 stimulation, and an increase in pH to 7.6 led to an increase in egr-1 stimulation. The protein synthesis inhibitor cycloheximide led to a superinduction of egr-1 with preservation of the pH dependency of expression. Osteoblasts synthesize collagen, which is subsequently mineralized. RNA for type 1 collagen was stimulated approximately three- to fivefold, 40 min after medium change. Again the stimulation was inhibited by acidosis and increased by alkalosis. Cycloheximide abolished the pH dependency of expression. These results suggest that small changes in external pH have a significant effect on the expression of certain genes important for osteoblastic function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call