Abstract

Acute kidney injury (AKI) is common in sick neonates and associated with poor pulmonary outcomes, however, the mechanisms responsible remain unknown. We present two novel neonatal rodent models of AKI to investigate the pulmonary effects of AKI. In rat pups, AKI was induced surgically via bilateral ischemia-reperfusion injury (bIRI) or pharmacologically using aristolochic acid (AA). AKI was confirmed with plasma blood urea nitrogen and creatinine measurements and kidney injury molecule-1 staining on renal immunohistochemistry. Lung morphometrics were quantified with radial alveolar count and mean linear intercept, and angiogenesis investigated by pulmonary vessel density (PVD) and vascular endothelial growth factor (VEGF) protein expression. For the surgical model, bIRI, sham, and non-surgical pups were compared. For the pharmacologic model, AA pups were compared to vehicle controls. AKI occurred in bIRI and AA pups, and they demonstrated decreased alveolarization, PVD, and VEGF protein expression compared controls. Sham pups did not experience AKI, however, demonstrated decreased alveolarization, PVD, and VEGF protein expression compared to controls. Pharmacologic AKI and surgery in neonatal rat pups, with or without AKI, decreased alveolarization and angiogenesis, producing a bronchopulmonary dysplasia phenotype. These models provide a framework for elucidating the relationship between AKI and adverse pulmonary outcomes. There are no published neonatal rodent models investigating the pulmonary effects after neonatal acute kidney injury, despite known clinical associations. We present two novel neonatal rodent models of acute kidney injury to study the impact of acute kidney injury on the developing lung. We demonstrate the pulmonary effects of both ischemia-reperfusion injury and nephrotoxin-induced AKI on the developing lung, with decreased alveolarization and angiogenesis, mimicking the lung phenotype of bronchopulmonary dysplasia. Neonatal rodent models of acute kidney injury provide opportunities to study mechanisms of kidney-lung crosstalk and novel therapeutics in the context of acute kidney injury in a premature infant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call