Abstract

Thermogenesis is associated with oxidation activity in muscle and fat tissue, the target of non-pharmacological therapy in preventing the increase in obesity. This research was designed to reveal the circadian profile of thermogenic gene expression after the acute interval and continuous moderate-intensity exercise. The subjects were 22 randomly selected obese adolescent females who met the predetermined inclusion criteria. The study subjects were then divided into three groups: control group (CG), acute interval moderate-intensity exercise group (AIMIE), and acute continuous moderate-intensity exercise group (ACMIE). Acute interval and continuous exercise were performed by running on a treadmill for 40-45 minutes, while moderate-intensity was defined as 60%-70% of the maximum heart rate (HRmax). The blood samples were collected initially (pre-exercise), followed by 10 minutes, 6 hours, and 24 hours post-acute interval and continuous moderate-intensity exercise treatment. Measurement of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and fibronectin type III domain 5 (FNDC-5) expressions in protein level were confirmed by enzyme-linked immunosorbent assay (ELISA) method. Data were analyzed using one way-ANOVA and two way-ANOVA with a significant level of 5%. The findings suggest a substantial increase in the expression of PGC-1α and FNDC-5 after exercise compared to before the workout. A significant difference in PGC-1α and FNDC-5 expressions between the control group compared to AIMIE and ACMIE (p ≤ 0.05) has been observed. However, there is no significant difference in PGC-1α and FNDC-5 expressions after exercise between AIMIE and ACMIE (p ≥ 0.05). In conclusion, acute interval and continuous moderate-intensity exercise increase the expression of thermogenesis-related genes. Hence, acute interval and continuous moderate-intensity exercise might be potential non-pharmacological therapy to prevent, reduce, and control the increasing prevalence of obesity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call