Abstract

Acute intermittent hypoxia (AIH) induces sympathetic and phrenic long-term facilitation (LTF), defined as a sustained increase in nerve discharge. We investigated the effects of AIH and acute intermittent optogenetic (AIO) stimulation of neurons labeled with AAV-CaMKIIa, hChR2(H134R), and mCherry in the nucleus of the solitary tract (NTS) of anesthetized, vagotomized, and mechanically ventilated rats. We measured renal sympathetic nerve activity (RSNA), phrenic nerve activity (PNA), power spectral density, and coherence, and we made cross-correlation measurements to determine how AIO stimulation and AIH affected synchronization between PNA and RSNA. Sixty minutes after AIH produced by ventilation with 10% oxygen in balanced nitrogen, RSNA and PNA amplitude increased by 80% and by 130%, respectively (P < 0.01). Sixty minutes after AIO stimulation, RSNA and PNA amplitude increased by 60% and 100%, respectively, (P < 0.01). These results suggest that acute intermittent stimulation of NTS neurons can induce renal sympathetic and phrenic LTF in the absence of hypoxia or chemoreceptor afferent activation. We also found that while acute intermittent optogenetic and hypoxic stimulations increased respiration-related RSNA modulation (P < 0.01), they did not increase synchronization between central respiratory drive and RSNA. We conclude that mechanisms that induce LTF originate within the caudal NTS and extend to other interconnecting neuronal elements of the central nervous cardiorespiratory network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.