Abstract

Purpose. To investigate in vivo the acute host response to an alternative implant designed for the treatment of stress urinary incontinence (SUI) and pelvic organ prolapse (POP). Methods. A biodegradable scaffold was produced from poly-L-lactic acid (PLA) using the electrospinning technique. Human and rat adipose-derived stem cells (ADSCs) were isolated and characterized by fluorescence-activated cell sorting and differentiation assays. PLA scaffolds were seeded and cultured for 2 weeks with human or rat ADSCs. Scaffolds with and without human or rat ADSCs were implanted subcutaneously on the abdominal wall of rats. After 3 and 7 days, 6 animals from each group were sacrificed. Sections from each sample were analyzed by Haematoxylin and Eosin staining, Sirius red staining, and immunohistochemistry for CD68, PECAM-1, and collagen I and III. Results. Animals responded to the scaffolds with an acute macrophage response. After 7 days of implantation, there was extensive host cell penetration, new blood vessel formation, and new collagen deposition throughout the full thickness of the samples without obvious differences between cell-containing and cell-free scaffolds. Conclusions. The acute in vivo response to an alternative implant (both with and without cells) for the treatment of SUI and POP showed good acute integration into the host tissues.

Highlights

  • Surgical implantation of both natural and synthetic cell-free materials is the current standard of care in many parts of the world in the treatment of stress urinary incontinence (SUI) and pelvic organ prolapse (POP) [1]

  • Nondegradable polypropylene implants cannot be remodelled and induce release of cytokines, and some patients respond to them with chronic inflammation followed by an unsuitable fibrosis which can lead to the above complications [5]

  • We have previously shown the potential of poly-lactic acid (PLA), an FDA approved polymer synthesized into a microfiber scaffold, to develop in vitro into an engineered tissue when seeded with adipose derived stem cells (ADSCs) producing the key extracellular matrix (ECM) proteins [7]

Read more

Summary

Introduction

Surgical implantation of both natural and synthetic cell-free materials is the current standard of care in many parts of the world in the treatment of stress urinary incontinence (SUI) and pelvic organ prolapse (POP) [1]. Nondegradable polypropylene synthetic meshes, introduced as a less invasive alternative, have been widely used over the past decade; increasing reports of serious complications with these materials such as vaginal or urinary tract exposure, chronic pain, and voiding dysfunction are emerging [2,3,4]. Nondegradable polypropylene implants cannot be remodelled and induce release of cytokines, and some patients respond to them with chronic inflammation followed by an unsuitable fibrosis which can lead to the above complications [5]. The outcomes of using degradable biological grafts, trialled in limited clinical studies, are mixed. Animal collagen grafts have been found to fail due to quick degradation and while chemical

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call