Abstract
Hyperhomocysteinemia is associated with decreased vascular reactivity and increased cardiovascular morbidity. Oxidative stress and reduced NO bioavailability have been proposed as a mechanism for the adverse effects of chronically elevated plasma homocysteine levels. Recent studies suggest that acute elevations of plasma homocysteine may also impair endothelial function and vasodilation, however, the mechanism is not clear. In the present study, we investigated whether moderate hyperhomocysteinemia after methionine loading decreases NO bioavailability, increases oxidative stress, and impairs receptor-mediated NO-dependent venodilation in healthy adults. After oral methionine loading (0.1 g/kg), mean homocysteine concentrations increased 3.2-fold, from 6.9 ± 0.5 to 27.8 ± 1.9 μmol/l ( n = 16), whereas plasma NO x concentrations, an indicator of NO release, were decreased by 12% compared to placebo treatment ( P = 0.005). Vitamin E levels in freshly isolated low density lipoprotein (LDL), a sensitive marker of LDL oxidation, and LDL lipid (hydro)peroxide levels were unchanged after methionine loading. Endothelium-dependent venodilation induced by bradykinin was reduced by 18% during hyperhomocysteinemia ( P = 0.06). Taken together our data suggest that the reduced NO bioavailability was likely due to decreased NO synthesis and release rather than to NO destruction by oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.