Abstract

Neuronal activity is accompanied by a rapid increase in interstitial lactate, which is hypothesized to serve as a fuel for neurons and a signal for local vasodilation. Using FRET microscopy, we report here that the rate of glycolysis in cultured mice astrocytes can be acutely modulated by physiological changes in extracellular lactate. Glycolytic inhibition by lactate was not accompanied by detectable variations in intracellular pH or intracellular ATP and was not dependent of mitochondrial function. Pyruvate was also inhibitory, suggesting that the effect of lactate is not mediated by the NADH/NAD(+) ratio. We propose that lactate serves as a fast negative feedback signal limiting its own production by astrocytes and therefore the amplitude of the lactate surge. The inhibition of glucose usage by lactate was much stronger in resting astrocytes than in K(+)-stimulated astrocytes, which suggests that lactate may also help diverting glucose from resting to active zones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.