Abstract

Despite much information regarding BPA toxicity in fish and other aquatic organisms, data is still misleading as most studies have utilized concentrations several orders of magnitude higher than those typically found in the environment. As an illustration, eight of the ten studies investigating the impact of BPA on the biochemical and hematological parameters of fish have employed concentrations on the order of mg/L. Therefore, the results may not accurately represent the effects observed in the natural environment. Considering the information above, our study aimed to 1) determine whether or not realistic concentrations of BPA might alter the biochemical and blood parameters of Danio rerio and trigger an inflammatory response in the fish liver, brain, gills, and gut and 2) determine which organ could be more affected after exposure to this chemical. Findings pinpoint that realistic concentrations of BPA prompted a substantial increase in antioxidant and oxidant biomarkers in fish, triggering an oxidative stress response in all organs. Likewise, the expression of different genes related to inflammation and apoptosis response was significantly augmented in all organs. Our Pearson correlation shows gene expression was closely associated with the oxidative stress response. Regarding blood parameters, acute exposure to BPA generated biochemical and hematological parameters increased concentration-dependent. Thus, it can be concluded that BPA, at environmentally relevant concentrations, threatens aquatic species, as it prompts polychromasia and liver dysfunction in fish after acute exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call