Abstract

Fishes are the first group of vertebrates that respond when the environment is contaminated with pollutants resulted from anthropogenic activities. The development of the toxicity tests is bringing new evidence about the toxicological effects of the pollutants upon the life forms. Behavioural abnormalities in the swimming performance and cognitive processes were well associated with the response of organisms to pollutants from environment. The aim of the paper was to study the behavioural changes of zebrafish (memory, swimming performances and aggression) and oxidative stress (superoxide dismutase and malondialdehyde) during 32 h of acute exposure with methylmercury (II) chloride to measure its neurotoxicity effects upon fish community. The experiments from this study tested and measured the fish community response to methylmercury concentrations (1 μg L−1 and 15 μg L−1) in the first hours after it contamination based on zebrafish model. The changes of the behaviour in the case of a fish species may lead in the end to their population reduction based on less reproductive success, lower food resource exploitation and problems in the predator avoidance. The behavioural tests described in the present study can be applied to measure the neurotoxicity of other metals compounds, to do plans and protocols for avoiding future ecological disasters. The behavioural changes of zebrafish exposed to methylmercury (II) chloride were similar to mammal models and they will have applications in future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.