Abstract

There is mounting clinical evidence that ethanol toxicity to the pancreas is linked with glutathione depletion from oxidative stress but there is not experimental proof that this occurs. The effect of acute ethanol ingestion (4 g/kg) on the pancreatic content of reduced (GSH) and oxidised (GSSG) glutathione, malondialdehyde (MDA), and carbonyl proteins were therefore studied in the rat. Ethanol caused a significant reduction in GSH (p < 0.02) and an increase in GSSG (p < 0.005), MDA (p < 0.05), and carbonyl proteins (p < 0.05) in the rat pancreas. The GSH/GSSG ratios were significantly decreased after ethanol, especially in rats pretreated with diethylmaleate (DEM), a GSH blocker. Administration of ethanol after DEM further increased the rate of lipid and protein oxidation. Pretreatment with cyanamide (an inhibitor of aldehyde dehydrogenase) but not with 4-methylpyrazole (an alcohol dehydrogenase inhibitor) caused higher production of GSSG and MDA. These findings indicate that acute ethanol reduces the pancreatic content of GSH, which seems to be protective against ethanol toxicity, since its depletion is accompanied by increased oxidative damage to cell structures. The further increase of lipid peroxidation and GSSG production in the presence of cyanamide suggests that acetaldehyde might be responsible for the oxidative changes that occur in pancreatic cells after ethanol administration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.