Abstract
Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, was systemically infused during a hyperinsulinemic euglycemic clamp to investigate its effects in vivo. Rats were infused under anesthesia with saline, 10 or 20 mU.min-1.kg-1 insulin, wortmannin (1 microg.min-1.kg-1)+saline, or wortmannin+insulin (10 mU.min-1.kg-1); wortmannin was present for 1 h before and throughout the 2-h clamp. Femoral blood flow (FBF), glucose infusion rate to maintain euglycemia (GIR), glucose appearance (Ra), glucose disappearance (Rd), capillary recruitment by 1-methylxanthine metabolism (MXD), hindleg glucose uptake (HLGU), liver, muscle, and aorta Akt phosphorylation (P-Akt/Akt), and plasma insulin concentrations were determined. Plasma insulin increased from 410+/-49 to 1,680+/-430 and 5,060+/-230 pM with 10 and 20 mU.min-1.kg-1 insulin, respectively. Insulin (10 and 20 mU.min-1.kg-1) increased FBF, MXD, GIR, Rd, and HLGU as well as liver, muscle, and aorta P-Akt/Akt and decreased Ra (all P<0.05). Wortmannin alone increased plasma insulin to 5,450+/-770 pM and increased Ra, Rd, HLGU, and muscle P-Akt/Akt without effect on blood glucose, FBF, MXD liver, or aorta P-Akt/Akt. Wortmannin blocked FBF, MXD, and liver P-Akt/Akt increases from 10 mU.min-1.kg-1 insulin. Comparison of wortmannin+10 mU.min-1.kg-1 insulin and 20 mU.min-1.kg-1 insulin alone (both at approximately 5,000 pM PI) showed that wortmannin fully blocked the changes in FBF and Ra and partly those of GIR, Ra, Rd, HLGU, and muscle P-AKT/Akt. In summary, wortmannin in vivo increases plasma insulin and fully inhibits insulin-mediated effects in liver and aorta and partially those of muscle, where the latter may result from inhibition of insulin-mediated increases in blood flow and capillary recruitment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.