Abstract

As plastic pollution continues to increase and plastic waste is shredded to form smaller plastic particles, there is growing concern about the potential impact of nanoplastics (NPs) on freshwater ecosystems. In this work, the effects of three surface-modified NPs, including polystyrene (PS), PS-NH2, and PS-COOH, on the growth, photosynthetic activity, oxidative damage, and microcystins (MCs) production/release of Microcystis aeruginosa (M. aeruginosa) were investigated. Results indicated that all three NPs significantly inhibited the growth of M. aeruginosa after a 96 h exposure, and the growth inhibition followed the order of PS-NH2 > PS > PS-COOH (p < 0.05). Meanwhile, all three NPs at the concentration of 100 mg/L significantly increased the content of intra-MCs (115 %, 147 %, and 121 % higher than the control, respectively) and extra-MCs (142 %, 175 %, and 151 % higher than the control, respectively) after a 96 h exposure (p < 0.05). Moreover, our findings also suggested that the potential mechanisms of surface-modified PS NPs on M. aeruginosa growth and MCs production/release were associated with physical constraints, photosynthetic activity obstruct, and oxidative damage. Our findings provided direct evidence for different kinds of surface modifications of PS NPs on freshwater algae and improve the understanding of the potential risk of NPs in aquatic ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.