Abstract

The effects of static stretching (StS) on subsequent strength and power activities has been one of the most debated topics in sport science literature over the past decades. The aim of this review is (1) to summarize previous and current findings on the acute effects of StS on muscle strength and power performances; (2) to update readers’ knowledge related to previous caveats; and (3) to discuss the underlying physiological mechanisms of short-duration StS when performed as single-mode treatment or when integrated into a full warm-up routine. Over the last two decades, StS has been considered harmful to subsequent strength and power performances. Accordingly, it has been recommended not to apply StS before strength- and power-related activities. More recent evidence suggests that when performed as a single-mode treatment or when integrated within a full warm-up routine including aerobic activity, dynamic-stretching, and sport-specific activities, short-duration StS (≤60 s per muscle group) trivially impairs subsequent strength and power activities (∆1–2%). Yet, longer StS durations (>60 s per muscle group) appear to induce substantial and practically relevant declines in strength and power performances (∆4.0–7.5%). Moreover, recent evidence suggests that when included in a full warm-up routine, short-duration StS may even contribute to lower the risk of sustaining musculotendinous injuries especially with high-intensity activities (e.g., sprint running and change of direction speed). It seems that during short-duration StS, neuromuscular activation and musculotendinous stiffness appear not to be affected compared with long-duration StS. Among other factors, this could be due to an elevated muscle temperature induced by a dynamic warm-up program. More specifically, elevated muscle temperature leads to increased muscle fiber conduction-velocity and improved binding of contractile proteins (actin, myosin). Therefore, our previous understanding of harmful StS effects on subsequent strength and power activities has to be updated. In fact, short-duration StS should be included as an important warm-up component before the uptake of recreational sports activities due to its potential positive effect on flexibility and musculotendinous injury prevention. However, in high-performance athletes, short-duration StS has to be applied with caution due to its negligible but still prevalent negative effects on subsequent strength and power performances, which could have an impact on performance during competition.

Highlights

  • There is historical tradition saying that stretching has been practiced for thousands of years, mostly by warriors before combat (Behm, 2018)

  • There is strong evidence suggesting that static stretching (StS) causes only trivial negative effects on subsequent strength and power performances if the accumulated duration per muscle group does not exceed 60 s

  • Coaches are advised to consider short-duration StS as an important warm-up component in recreational sports due to its potentially positive effect on flexibility and musculotendinous injury prevention

Read more

Summary

Introduction

There is historical tradition saying that stretching has been practiced for thousands of years, mostly by warriors before combat (Behm, 2018). The general belief that spread from the World Wars until the 1990s is that StS promoted flexibility and improved athletic performance (Behm, 2018). This was mainly substantiated by the thought that greater ROM reduces resistance to movement and improves movement economy (Behm, 2018). More recent findings demonstrated that when included in a full warm-up routine, short-duration StS does not impair subsequent strength and power performances (Blazevich et al, 2018; Reid et al, 2018)

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call