Abstract
Glutamine deficiency, a common finding in severe illness, has a negative influence on immune status, protein metabolism, and disease outcome. In several studies, a close relationship between glutamine, branched-chain amino acid (BCAA), and protein metabolism was demonstrated. The aim of the present study was to investigate the effect of glutamine deficiency on amino acid and protein metabolism in hepatic tissue using a model of isolated perfused rat liver (IPRL). Parameters of protein metabolism and amino acid metabolism were measured using both recirculation and single pass technique with L-[1- 14C]leucine and [1- 14C]ketoisocaproate (KIC) as a tracer. Glutamine concentration in perfusion solution was 0.5 mmol/L in control and 0 mmol/L in the glutamine-deficient group. The net release of glutamine (about 11 μmol/g/h) and higher net uptake of most of the amino acids was observed in the glutamine-deficient group. There was an insignificant effect of lack of glutamine on hepatic protein synthesis, proteolysis, and the release of urea. However, significantly lower release of proteins by the liver perfused with glutamine-deficient solution was observed. The lack of glutamine in perfusion solution caused a significant decrease in leucine oxidation (6.66 ± 1.04 v 13.67 ± 2.38, μmol/g dry liver/h, P < .05) and an increase in KIC oxidation (163.7 ± 16.5 v 92.0 ± 12.9 μmL/g dry liver/h, P < .05). We conclude that decreased delivery of glutamine to hepatic tissue activates glutamine synthesis, decreases resynthesis of essential BCAA from branched-chain keto acids (BCKA), increases catabolism of BCKA, and has an insignificant effect on protein turnover in hepatic tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.